
To be presented at the First IEEE International Conference on ENGINEERING OF COMPLEX COMPUTER SYSTEMS,
Florida, USA, November 6-10, 1995

POSD - a notation for presenting complex systems of processes

Abstract

 When trying to describe the behaviour of large systems,
such as the business processes of large enterprises, we
often adopt diagramming techniques based on derivatives
of data flow diagrams. For very complex systems such
diagramming techniques suffer from the inability to
abstract uniformly from arbitrary subcollections of
components. In this paper we present an extension to
conventional diagramming techniques which solves this
problem. We describe how we have applied this technique
to some very complex business systems and illustrate its
main points with a simple example. While we have used
the notation to present models of business processes we
conclude that it is applicable to the description of
behaviour in any complex system of processes.

Background

We are concerned with the nature of change in large and
complex computer-based systems. In particular we are
concerned with distributed systems, comprising many
individually complex, legacy components. Such systems
have become the basis of all large commercial or
industrial enterprises. But the nature of the business in
which these enterprises engage is constantly changing. So
it is necessary to change the supporting computer systems
if these enterprises are to remain competitive. We
conjecture that the right way to go about such changes,
given the constraints imposed by the legacy systems, is to
model the business process which the enterprise system
supports and to show how this process maps onto the
legacy components [[1]]. The model must be in a form
which the owners of the business process can understand,
so that the proposed changes can be properly discussed
with them and so that the impact of alternative changes can
be assessed by them. We take this need for business user
involvement to imply that the model must be presented in
diagrammatic form.

We have used many types of diagramming technique in our
work. Data flow diagrams of the SSADM, SADT, IDEF or
Petri Net variety are probably the simplest for business
users to comprehend intuitively [[2]]. Consequently they
are the kind of diagram we have made most use of over the
years. Usually such diagramming notations use two types
of component: boxes (typically) to denote processing and
lines to denote data flow. The notation usually allows
boxes to be nested, but no matter how deeply the hierarchy
is formed, usually the items flowing between processes
are at the same level of abstraction from the most detailed
to the highest level diagram. For large, complex systems
this proves to be a drawback

Over the last two years, along with colleagues, we have
developed models of a number of very large businesses.
For example we have modeled a significant part of the
business process of a large financial organisation.
Similarly, we have modelled actual and proposed schemes
for the business process known as a loyalty scheme in a
retail organisation. Reports on these and other models are
available on our Web pages [[3]]. The most detailed
models were indeed data flow models. But abstractions
from them were presented in a new form which we have
called POSD diagrams (for Process Oriented System
Design). Figure 1 shows a POSD diagram of a part of the
business system we have modeled for the retail sector.
This will be described in the next section when POSD
notation is discussed.

Each of these business systems is modeled at many levels
of abstraction and thus it is possible to show the mapping
between levels. Also, different views of the same system
are constructed. In particular we construct the low level
view where the basic components map exactly on to
services provided by the distributed support system. One
can abstract from that in different ways, making different
high level views. Abstractions are formed by combining
components into higher level collections based on the
structure of the distributed system or based on the
structure of the component business processes. These two
views in particular allow one to judge the effect of
proposed business process changes in terms of the

Peter Henderson

Department of Electronics and Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
peter@ecs.soton.ac.uk

Graham D. Pratten

International Computers Ltd
Westfields, West Avenue
Kidsgrove, ST7 1TL, UK

G.D.Pratten@uk03.wins.icl.co.uk

changes required to the legacy systems.

POSD Notation

The name we have given the notation reflects our current
use for it. We are using POSD (Process Oriented System
Design) notation to model the business systems of large
end-user organizations. We will normally model the
existing business processes and, because proposed
changes are the driving force, we will then model
alternative future reorganizations of the business process.
By showing the mapping to the installed legacy computer
systems we can discuss the cost/benefit of each proposal
with the owners of the business process. POSD is always
used in conjunction with some base-level modelling
language, such as data flow diagrams. Initially we work
bottom-up. Typically, early attempts at modelling a
business process are at (or only a little above) the data
flow (document flow, work flow) level. After a while our
understanding of the model is such that we can begin to
form more abstract views. The principal way in which this
happens is by a process of abstraction from the low-level

data flow diagram. Logically related components are
combined into more abstract entities, and eventually a
hierarchical view is arrived at bottom-up. It is this process
of abstraction which the data flow diagram (and its
relations) does not support sufficiently well. What we
needed was a notation which allowed arbitrary
subcollections of components to be combined to form a
single new, more abstract component.

The consequence of this observation is that, whatever the
nature of a collection of components, there must be an
abstract component of a suitable “type” to which we can
abstract that collection. The simplest solution to this
apparent dilemma is to have only a single type of
component. Since we a primarily concerned with process
modelling we have termed our single component type a
“behaviour”. A behaviour is a component which has state,
performs internal actions and interacts with other

behaviours. Elsewhere we have given a more
comprehensive description of this concept [[3]]. Clearly
we can see that the usual process/activity element of a data
flow diagram is a kind of behaviour. So too are the usual
data repository components. With a little more thought, so
too are the various means of data transfer among
components.

Consider the simple POSD model shown in Figure 1. This
comes from our model of a business process in Retail
where the Consumer will Purchase items from a Retail
Outlet. The fact that the Consumer’s interface with the
Retail Outlet is a Purchase is denoted by the juxtaposition
of the boxes, by the fact that they actually touch each
other. Each box is a behaviour. This diagram is an abstract
view of the loyalty scheme. At this level of detail we have
not said whether the method of purchasing is direct or by
mail order or any of a wide variety of schemes. There are
other relationships shown in the diagram. A Promoter
encourages the Consumer to make certain purchases by
offering Inducements (typically the promise of a gift or a
discount). The Consumer can subsequently redeem this
inducement, apparently by an interaction (called
Redemption) with the Promoter. This particular abstract
model is only one of many views of the Retail business
process derived from lower-level data flow diagrams.
Some views are organised (as this one) to show the
business oriented abstractions while others are organised
to show the location of the distributed systems which
support this process.

Each box in a POSD diagram is a behaviour. Sometimes
we show two levels on a single diagram. When we do, the
behaviour of an outer box is implemented by the combined
behaviours of the inner boxes. If two boxes touch this
implies that there is direct interaction between them. If
two boxes do not touch this implies there is no direct
interaction between them. We have not restricted
interaction to data (or other artifact) flow. Usually we
refer to this interaction as shared behaviour, for a reason
which will soon be apparent. Since behaviours will be
made up of component behaviours we will expect
interaction between touching behaviours at one level to be
realized in some way at the more detailed level. We refer
to the fact that two behaviours touch as a promise that we
will (in a more detailed diagram) define how that
interaction is accomplished.

There are basically three ways in which it can be
accomplished as shown in Figure 2. A and B are
behaviours which interact. This interaction is
accomplished either by the fact that

1. each of A and B contains sub-behaviours which interact
at the lower level, (here C in A interacts with D in B),

Promoter
Inducement

Consumer

Redemption

Retail Outlet Purchase

Figure 1 POSD model of Retail loyalty scheme

or

2. there is a shared sub-behaviour which is common to
both A and B, (here C is common) or finally

3. one of A or B contains a sub-behaviour which interacts
with the other high level behaviour, (here A contains C
which interacts with B).

Clearly all promises are ultimately resolved by an
application of rule 2. It is more normal to draw the two
halves of the diagram for rule 2 separately and denote the
fact that A and B share behaviour C by the fact that the
common sub-component has the same name in each half.
Sometimes we will draw the two halves overlapping, but
our experience is that this not only leads to cluttered
diagrams, it leads to confusion.

These are all the core diagramming concepts of POSD.
POSD is intended for use with a suitable base-level
modelling notation. We have used it mostly with DFD’s,
with Role Interaction Diagrams, with Finite State Machine
notations and with Petri Nets. The only other POSD
concept which needs to be described is how component

behaviours are named. So far, in our examples, we have
used global names for instances of behaviours and in
general this will serve. But for large systems, names
become an issue and in the next section we will discuss
this issue in the context of a simple example.

A Simple Example

We have chosen to detail the interaction between a Person
and a Mail System as shown in Figure 3. Here we show
that the Person and the Mail System each contain sub-
behaviours which we have called Send and Receive. The
interaction between a Person and a Mail System is
fulfilled by the interaction between a Send and a Receive.
It is necessary to distinguish between the type of a
behaviour and an instance of a behaviour of that type. In the
example we have show three instances of the Send

behaviour and distinguished them by indexes.

In general, we are not pedantic about names on diagrams.
But we have developed a reference model for POSD in
which a naming scheme is defined (see papers on our Web
pages [[3]]) where the distinction between types and
instances is clearly denoted. For example the instances of
the Send behaviour would be denoted fully as
Person.Send1, MailSystem.Send2 and MailSystem.Send3.
It is not intended that such a naming scheme is used by
modellers but rather that full names are derived by the
tools which support POSD diagramming.

At the next level of detail in our example, we have to show
how the Send and Receive behaviours interact. We have
supposed that this model is bottomed-out as a Petri-Net.
Some of the detail is shown in Figure 4. Here we have a
shared behaviour T common to both Send and Receive. A
formal model should be accompanied by the equation
Send.T=Receive.T but in practice we allow the fact that the
name T is common to denote this equality.

Of course the purpose of these models is for us to be able
to confirm that we have made an accurate presentation of
the system and for us to be able to discuss the system with
the owners of the business process. It is most likely that
we would show only the top-level most abstract models to
the business process owner, reserving the more detailed
(and demanding) models to our own technical uses.
Nonetheless, the lower level models are vital to an

A B
C D

A B
C

A B

(1) (2)

(3)

C C

Figure 2 Ways in which promises are fulfilled

Person
Mail System

Send1

Receive1 Send2

Receive2

Receive3

Send3Transfer
Compose

Figure 3 A Person's interaction with the Mail

Send Receive

T T

Figure 4 Detail of interaction between a Send and a Receive

accurate presentation of the abstract models and, as we
said earlier, are often the way-in to the modelling project.
This is because it is often easier to get to grips with detail
to begin with. When abstraction comes, it is of course the
key to a clear presentation, which is in turn the key to
clear understanding. And understanding must precede cost
effective change.

Conclusions

The method we have presented has served us well in a
number of large scale system analysis activities performed
by ICL. In particular, models of the business processes of
a Financial Services business, of a Retail business and
most recently of a News Agency business have been built
on behalf of customers. The analysis has involved
traditional tools and techniques complemented by POSD.
In particular we have used the Process Wise process
modelling tools which are a commercial product based on
the IPSE 2.5 research prototype ([[4]], [[7]], see also [[6]])
to capture many of the base level processes. Process Wise
has been extended to include POSD diagramming
capability. We plan further tools, in particular a
database/configuration management tool which will allow
the organization and reorganization of a large set of inter-
related diagrams. In particular this tool will keep track of
unfulfilled promises. A prototype has been built using
Access.

During the POSD analysis process, as with any systems
analysis process, many diagrams are generated which are
eventually superseded by improved diagrams. But in
POSD, we also need to maintain simultaneously many
different views (abstractions) of the same base process.
The importance of documentation in the engineering of
large complex systems is well established [[5]].
Consequently, a tool to facilitate the production of
different presentations is urgently needed.

POSD is in the later stages of definition. It is being case
hardened. The concepts presented here are just the core
concepts. In practice it is necessary to adopt naming
conventions for components which mirror the customer’s
usual conventions. As we have said, we have methods of
naming types and instances of behaviours which satisfy
this need. Also in practice it can be useful to use
diagramming conventions different from those used here.
For a long time we used both boxes and lines (which we
tried to think of as shriveled boxes) to overcome some
predictable topological problems (e.g. 5 boxes all of
which

need to touch each other). Lately we have dropped this
extension ourselves because we believe it encourages us
to accept still-too-complex models. But we are not certain
that we won’t return to it and we don’t discourage it in
others. There are some types of complex interaction
which require the simultaneous participation of more than
two behaviours and this is not well represented by
juxtaposition.

POSD has been presented as a process modelling method,
specifically for business processes. But we believe that it
can be used more widely. Indeed for anything that data
flow diagrams or finite state models or indeed Petri Nets
have been used for, both hardware and software. We are
planning such applications ourselves and hope soon also to
publish our formal reference model with which we can
confirm some of our conjectures about the applicability of
the ideas.

References

[1] Peter Henderson Software Processes are
Business Processes Too 3rd International
Conference on the Software Process, IEEE
Computer Society Press, Oct 1994

[2] John Buxton and John McDermid Architectural
Design in Software Engineer’s Reference Book,
Butterworth Heinemann, 1991

[3] Peter Henderson and Graham D Pratten POSD -
Process Oriented System Design, CS/IN/2296,
International Computers Ltd, February
1995,accessible, along with other POSD reports,
from http://louis.ecs.soton.ac.uk/~ph/cv.html

[4] Robert A Snowdon An introduction to the IPSE
2.5 Project ICL Technical Journal 6(3), 1989

[5] David L Parnas Software Aging Proceedings of
the 16th International Conference on Software
Engineering, IEEE Computer Society Press, 1992

[6] Ian Robertson An Implementation of the ISPW-6
Process Example in Software Process
Technology, Proceedings of EWSPT 94, Springer
Verlag, LNCS 772, 1994

[7] Brian C Warboys The IPSE 2.5 Project: Process
Modelling as the basis for a support
environment in Proceedings of the First
International Conference on Software
Development Environments and Factories, Berlin
1989

